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1. Introduction. This paper describes the construction of binary additive bases 
for all even numbers in some finite interval 2 ? 2n < N. The construction makes 
use of a simple algorithm, first introduced by the authors in an earlier paper [1]. 
In the present paper the algorithm is applied to the sequence of primes, and several 
distinct "sparse" prime bases, constructed with its help, are described. As a by- 
product of this work, the verification of the Goldbach conjecture has been extended 
up through all even numbers 2n ? 107.t The algorithm has also been applied to 
several random sequences of odd integers chosen so that their distribution is ap- 
proximately that of the primes. Although the algorithm cannot, at present, be 
treated theoretically, even with regard to its asymptotic behavior, one may make 
plausible conjectures about it on the basis of various distinctive gross features; we 
hope to discuss this in a separate paper. 

2. Definition of the Algorithm. Given a sequence of odd integers {ai 1, we wish to 
select a subsequence {by of these-generally with as few elements as will serve-so 
that every even number 2n within certain limits, No < 2n < N1, can be written 
in the form: 

(2.1) 2n b= +bi . 

For example, the sequence {ai} may consist of the prime numbers greater than or 
equal to some initial prime po = a0. In this case we can take the sequence { ai to 
be as large as we like, introducing new members as they are needed; the number 
will depend on the upper limit N1. We may equally well choose different sequences 
of odd numbers for our { ail -for example the sieve numbers known as "lucky 
numbers" [2], or, in fact, any set of odd numbers which can be generated according 
to a well-defined prescription. 

Since our object is to produce a binary basis that will be in some sense "sparse," 
the following procedure immediately suggests itself. Let bo = ao. The first even 
number that can be expressed in the form (2.1) is 2no 2bo. For our second ele- 
ment we take bi = a, . To continue, form the even numbers 2bo, bo + bi, 2b, . Let 
2n* be the smallest even number > 2bo which does not belong to this set. We then 
look for the largest a E {aI} such that either bo + a = 2n* or b1 + a = 2n*. If no 
such element exists, we move on to 2n* + 2, etc. More generally, given the partial 
basis {bo, b, b2, * , b4}, we form all the sums: 

(2.2) Sij-b?+bj, i j k. 

Next we find the smallest even number 2n* > No (where No is the lower limit of 
the range) which does not belong to the set { Sij. We then set 

(2.3) bk+l = -1\1ax [a + bm = 2n*], a E {as}, 0 < m n ak. 
(a) 
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If this process is to yield a basis for the even numbers, then it must always be 
possible to find the "next" value bk+1 . If, for some even number 2n*, it proves im- 
possible to satisfy the equation a + bi = 2n* (i ? k), we say that the algorithm 
"fails." In this case we replace 2n* by 2n* + 2 in equation (2.3) and proceed. If 
the equation cannot be satisfied for the even number 2n* + 2, we replace the latter 
by 2n* + 4, etc. Eventually a new basis element bk+1 will be generated and the 
algorithm can be iterated. 

It is clear that while the upper limit N1 can be chosen in advance, the lower 
limit is a function of the set fail; in fact, it is just the smallest even number such 
that the sequence Ibij forms a true basis for all the even numbers in the range 
No ?- 2n ? N1. For "reasonable" sequences Iai} we expect that No will be "close" 
to 2aO ; what this means in practice will become clear from a study of the numerical 
examples (see Tables I and III). If fail is the set of all primes (beginning with 
ao = 3) we would conjecture that the sequence Ibi} generated by our algorithm is a 
binary additive basis for all even numbers 2n > 6. At present, nothing further can 
be said about this "sharpened" form of Goldbach's conjecture; all our calculations 
show is that, with {ai taken to be the set of primes less than 10i, the { bi generated 
by our algorithm is, in fact, a basis for all the even numbers 6 ? 2n < 107. 

Suppose that, for some N1 and a given set { ai, we have generated a basis { bi 
for all the evens No _ 2n < N1 . Let us now fix No and extend the upper limit N1 . 
(Note that we are in effect redefining N0.) We cannot say that the algorithm will 
not fail somewhere between N1 and the new upper limit N2 > N1 . If it does, how- 
ever, our prescription still allows us to extend the sequence { bi, which would then 
no longer constitute a true basis. If the set { ai is infinite we may let the upper limit 
approach infinity. The sequence { be is still well defined, and it would make sense 
to ask for an asymptotic formula for its density. A satisfactory treatment of this 
problem seems very desirable. 

For the cases studied in this paper, every sequence { bj has a density much less 
than that of the original sequence { ai}. This would seem to justify using the term 
"sparse" to characterize the {bi}. Accordingly, in the sequel we shall refer to the 
Ibi} as "S-sequences" (or "S-bases") and to our algorithm as the "S-algorithm." 

3. Results for the Prime Case. It is apparent from the above discussion that the 
S-sequence is uniquely determined by the set {ail. In particular, the elements of 
{bij depend critically on the value of a0. Let {ail be the sequence of (odd) primes, 
starting with a particular prime ao = Po . Then different sequences { bi will be pro- 
duced by different choices of Po. In the sequel we shall distinguish these different 
sequences by adding a subscript; thus the sequence corresponding to a particular 
choice of Po will be denoted by { bi}l0 . As an example, take the two sequences corre- 
sponding to po = 3, po = 11, respectively. The first 22 terms of Ib}3 are: 3, 5, 7, 13, 
19, 23, 31, 37, 43, 47, 53, 61, 79, 83, 109, 113, 101, 131, 139, 157, 167, 199. For 
Ibi}ll the first 22 terms are: 11, 13, 17, 19, 29, 31, 41, 43, 53, 37, 59, 79, 73, 113, 109, 
103, 107, 151, 163, 167, 179, 191. Note that the elements bi are not produced in 
strictly ascending order. We have called this phenomenon "backtracking." Thus, 
in the case po = 3, the first 16 terms constitute a 2-basis for the even numbers 
6 ? 2n ? 122. To express 2n 124 in the required form we must introduce the 
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prime b16 = 101: 124 = 101 + 23. While backtracking appears to persist even when 
one goes to higher values, it is not very prevalent. For example in the S-sequences 
for po = 1, 3, and 5, the number of elements less than 5 million which are generated 
"out of order" is, respectively, 5.55 %, 6.23 % and 5.22 % of the total. 

Let B(po ; x) be the number of primes ? x in the S-sequence {bi} . It is of interest 
to compare the values of B(po ; x) for a set of equally spaced x-values and different 
po . In Table I such a comparison is exhibited at intervals Ax = 200,000, x ? 5 X 106. 
In each case, the {bilP was found to constitute a true binary additive basis for all 
No < 2n < x; in other words, with the exception of a few early values (2n < No), 
no failure was observed in any case. 

Leaving aside for the moment the anomalous case po = 7 (see Sectikp 5), it is 
quite remarkable how small the variation of B(po ; x) with po is for fixed x; in the 
second half of the table (x 2 24 X 106) the absolute spread is less than 1.5 % of 
the lowest value for each x listed. This is perhaps all the more remarkable in view 
of the fact that the various S-bases {bij,. are very nearly pairwise disjoint, the 
number of primes common to two different sequences being typically between 3 % 
and 4 % of the total number in the shorter sequence. Let C(u, v; x) be the number 
of primes common to the two S-sequences {bil. and {bi, for the range 2n < x. 
Tables II-a and II-b give a partial tabulation of C(u, v; x) for the range 2n < 5 X 
106. In two cases-po = 1 and po = 3-the S-sequence has been calculated up to 
2n = 107. In these cases, we find B(1; 107) = 10474, B(3; 107) = 10576. For this 
range, the number of primes common to these two sequences is C(1, 3; 107) = 288. 
In passing we remark that this calculation verifies the Goldbach conjecture for all 
even numbers 2n < 107; to achieve this basis, less than 1.6 % of the available primes 
are required. 

4. Random Odds. As remarked in Section 2, the S-algorithm is not restricted to 
the sequence of primes. For example, in [1] we reported the construction of an S-basis 
for the evens 2n < 350,000 which was composed of lucky numbers. This basis was 
found to consist of 1672 luckies out of a total of 27420 luckies in the range. More 
recently, we have applied the algorithm to sets of odd numbers with approximately 
"prime-like" distribution. These sets were generated as follows. Let pi be the ith 
prime. We chose at random 360 odd numbers equally distributed in the interval 
3 to P360, then 360 more in the interval P361 to P720, and so forth up to P78498, the 
last prime less than 106 (the number of odds in the final interval was suitably ad- 
justed). Five such random sets were generated; we shall denote them by the symbols 
RO(1), RO(2), ... ,RO(5) ; for the conclusions we will draw here it is not necessary 
to specify them more fully. To each of these sets we then applied the S-algorithm. 
To facilitate comparison with the "standard" S-sequence {bJ3, we forced the first 
odd in each case to be ao = 3. Let us denote by RBj(x) the number of elements 
<x in the S-sequence generated from the set RO(j). In Table III we have tab- 
ulated RBj(x) for our five sets at ten equally spaced values of x _ 106. The last 
column gives B(3; x) for comparison. 

The agreement for given x is remarkable, especially in view of the fact that 
there is no connection between the random sets RO(j) beyond their common prime- 
like distribution. As one might expect, the S-sequences corresponding to any two 



TABLE I 

l-5X B(1; x) B(3; x) B(5; x) B(7; x) B(11;x) B(13;x) 
105x (No= 2) (No= 6) (No= 10) (No= 18) (No= 22) (No= 30) 

2 1235 1245 1263 1287 1236 1233 
4 1820 1837 1844 1970 1822 1813 
6 2265 2288 2300 2566 2268 2264 
8 2658 2681 2688 3089 2663 2654 

10 3000 3029 3027 3588 3005 3008 
12 3307 3337 3360 4074 3300 3315 
14 3598 3623 3640 4508 3599 3613 
16 3868 3909 3919 4955 3881 3882 
18 4123 4178 4178 5344 4130 4131 
20 4377 4421 4416 5747 4382 4390 
22 4612 4661 4656 6133 4615 4610 
24 4826 4883 4882 6514 4837 4832 
26 5057 5108 5087 6875 5048 5050 
28 5268 5318 5298 7216 5251 5250 
30 5472 5517 5505 7568 5454 5458 
32 5656 5710 5699 7892 5647 5643 
34 5857 5880 5891 8210 5832 5828 
36 6045 6078 6071 8523 6021 6023 
38 6218 6271 6260 8820 6204 6205 
40 6405 6452 6426 9132 6383 6387 
42 6568 6609 6598 9450 6548 6550 
44 6733 6787 6749 9741 6719 6707 
46 6896 6948 6920 10020 6889 6877 
48 7057 7110 7086 10299 7045 7029 
50 7211 7274 7256 10579 7220 7186 

10-5x B(71;x) B(73; x) B(79; x) B(83; x) B(89; x) B(97; x) 
(No = 166) (No = 166) (No = 176) (No = 190) (No = 190) (No = 198) 

2 1231 1239 1247 1239 1246 1239 
4 1803 1814 1809 1821 1811 1815 
6 2259 2266 2267 2277 2263 2270 
8 2644 2652 2657 2661 2644 2660 

10 2984 2996 2991 3002 2994 2989 
12 3294 3308 3317 3319 3308 3302 
14 3580 3593 3609 3595 3606 3594 
16 3864 3861 3885 3884 3875 3867 
18 4125 4120 4139 4127 4128 4117 
20 4359 4368 4371 4374 4368 4366 
22 4603 4609 4603 4610 4614 4589 
24 4831 4824 4832 4835 4829 4813 
26 5042 5045 5046 5046 5035 5024 
28 5254 5252 5255 5247 5246 5236 
30 5455 5460 5449 5459 5448 5437 
32 5636 5642 5638 5658 5640 5627 
34 5835 5831 5817 5840 5833 5814 
36 6021 6017 6012 6015 6020 6008 
38 6201 6190 6192 6215 6188 6180 
40 6376 6378 6374 6377 6369 6358 
42 6539 6537 6544 6553 6534 6528 
44 6720 6707 6704 6721 6703 6696 
46 6876 6866 6872 6876 6869 6860 
48 7031 7021 7033 7028 .7027 7028 
50 7181 7177 7185 7182 7186 7178 
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TABLE II-a TABLE II-b 

V V 
U U 

3 5 11 13 73 79 83 89 97 

1 250 253 282 269 71 264 253 280 259 290 
3 251 263 258 73 284 244 269 286 
5 237 275 79 272 269 239 

11 274 83 301 300 
89 281 

TABLE III 

10-6 RB,(x) RB2(x) RB3(x) RB4(x) RB5(x) B(3) 
(No = 38) (No = 16) (No = 136) (No = 52) (No = 158) B x 

1 754 757 760 763 760 843 
2 1115 1113 1113 1120 1116 1245 
3 1392 1384 1382 1389 1383 1565 
4 1619 1626 1624 1623 1618 1837 
5 1826 1826 1835 1830 1826 2075 
6 2025 2023 2018 2023 2016 2288 
7 2200 2205 2193 2197 2186 2494 
8 2370 2364 2361 2379 2361 2681 
9 2530 2516 2523 2526 2516 2862 

10 2676 2663 2661 2673 2666 3029 

random sets RO(i), RO(j) have very few common elements. For the pair RO(1), 
RO(2), the S-sequences have 117 elements in common; for the other nine pairs the 
number of common elements varies between 23 and 39. 

It is noteworthy that these prime-like random sets give rise to S-sequences 
markedly sparser than those produced by the primes themselves. The RO(i) are, 
however, prime-like only with respect to their overall density. For example, the 
distribution of gaps between successive elements is quite different from that which 
obtains for the prime sequence. In Table IV we compare the prime gap distribution 
for gaps of size g _ 56 (between successive primes) with the corresponding dis- 
tribution for four of our random sets (range: as < 106); in this table, N(g) denotes 
the number of gaps of size g between successive elements. The complete absence of 
"modulo 6 peaks" and the consequent monotonic decrease of N(g) with increasing 
g are just what one would expect. In view of the results presented in Table III, 
we may say that the primes, far from being a "privileged" sequence with regard 
to their efficiency as a binary additive basis for the evens, are somehow handicapped 
because of the distribution imposed on them by their defining sieve. 

The greater "efficiency" of the S-sequences generated from our random odd 
sets is also mirrored in the corresponding "Goldbach frequency distribution." 
This distribution may be defined for prime S-sequences as follows. Let v(po ; 2n) 
be the number of solutions of the equation 

(4.1) 2n = bi + bj, i <jbib, E {bilpo. 
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TABLE IV 

Number of Gaps N(g) of Size g Between Consecutive Elemnents 
range: as ? 106 

N(g) N(g) N(g) N(g) N(g) 
g (Primes) [RO(2)] [RO(3)] [RO(4)] [RO(5)] 

2 8169 12412 12469 12325 12532 
4 8143 10387 10429 10529 10411 
6 13549 8827 8808 8777 8744 
8 5569 7271 7298 7482 7299 

10 7079 6245 6308 6289 6258 
12 8005 5300 5156 5192 5274 
14 4233 4355 4376 4230 4374 
16 2881 3630 3666 3670 3593 
18 4909 3090 3163 3078 3111 
20 2401 2583 2605 2629 2627 
22 2172 2316 2250 2246 2243 
24 2682 1909 1819 1895 1901 
26 1175 1599 1557 1581 1543 
28 1234 1289 1333 1354 1301 
30 1914 1181 1123 1142 1142 
32 550 938 941 943 935 
34 557 807 761 775 824 
36 767 702 721 669 701 
38 330 585 579 570 556 
40 424 493 438 452 494 
42 476 438 416 426 415 
44 202 362 366 333 339 
46 155 273 306 307 284 
48 196 237 231 255 250 
50 106 20 5 229 216 222 
52 77 148 160 166 162 
54 140 134 148 159 139 
56 P3 122 142 123 126 

By the "Goldbach frequency distribution at the point (k, x)" we mean the 
number of solutions rk(po; x) of the equation 

(4.2) v(po ; 2n) = k, 2n < x. 

A corresponding definition holds for the random odd S-sequences, where we 
replace the label po by an appropriate symbol characterizing the underlying random 
odd set. In general, the random odd S-sequences have frequency distributions 
which are much more peaked (as a function of k for fixed x) than those belonging 
to the prime S-sequences. For example, if we form the sum Ek-1 ak(po ; 106) for 
any of the prime S-sequences (excluding po = 7), we find that we have included 
approximately 83 % of the total number of decompositions; the corresponding num- 
ber for the random odd S-sequences is about 98 %. 

5. The Anomalous Case. It is evident from Table I that { bi 7 is much denser than 
any of the other prime S-sequences studied. The result is so anomalous that one is 
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TABLE V 

Po Number of evens 2n* of the form 6m 

1 33 
3 45 
5 30 
7 18 

11 33 
13 42 
71 38 
73 27 
79 30 
83 30 
89 31 
97 41 

led to suspect a calculational error; numerous independent checks, however, have 
failed to turn up anything of the sort. So far as we can tell, the observed behavior is 
simply a numerical accident. There is, however, one property of the S-algorithm 
which may shed some light on the nature of this accident. It happens that, for all 
po tried so far, the even numbers 2n* which determine the successive bi (see equation 
(2.3)) are very rarely divisible by 6. This is shown in Table V for the range 2n ? 5 
X 106. This behavior itself remains to be explained, but given this observed prop- 
erty it is not unreasonable that a sufficiently large asymmetry in the distribution of 
the bi modulo 3 will increase in magnitude rather than be damped out. Such behavior 
would clearly lead to a much denser sequence {bi} and perhaps even to eventual 
failure of the algorithm. As it happens, all our prime S-sequences except that for 
p= 7 are evenly distributed (mod 3). The anomalous sequence, however, shows a 
ratio of 1.93 between primes 2 (mod 3) and primes 1 (mod 3). This is for the 
interval 2n < 5 X 106. The sequence { bi7 was actually computed up to 2n = 7 X 
106; here B(7; 7 X 106) = 13108 and the above-mentioned ratio has risen to 2.04. 
We have watched the development of this asymmetry in some detail without, how- 
ever, learning anything whatsoever about the underlying reason for the anomalous 
behavior. 

Other distinctive properties of {bi}7 are consistent with the observed behavior 
of B(7; x). The Goldbach frequency distribution o-k(7; x) is much broader (as a 
function of k) than it is for any of the other cases studied. In addition, the "back- 
tracking" phenomenon mentioned in Section 2 is much more pronounced for this 
case; in the range 2n < 5 X 106, some 9.95 % of the minimals were generated "out 
of order." 

Note added in proof. Since this article was written, we have extended our verifica- 
tion of the Goldbach conjecture up to one hundred million, using a simple sieve 
technique quite independent of the S-sequence method reported here. As a result 
of this work we may state the following-not very surprising-empirical theorem. 

Let p = P(2n) be the smallest odd prime ? 3 such that 2n - p is a prime. 
Then, for 63276 ? 2n < 108, P(2n) < V2n. For this range, the maximum value 
of P(2n) turns out to be 1093: 60119912 = 1093 + 60118819. 

At the suggestion of Dr. D. Shanks, we also carried through the verification, 
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over the same range, of the "modified" Goldbach conjecture, namely that every 
even number 4n + 2 is the sum of two primes of the form 4k + 1 (here 1 is counted 
as a prime). The above theorem holds, mutatis mutandis, for this case also, i.e. for 
1457284 < 2n (=4m + 2) < 108, P(2n) < \/2n. In this case, the maximum value 
of P(2n) over the range is 2953: 76550462 = 2953 + 76547509. 
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